Муниципальное образование — городской округ город Рязань Рязанской области Муниципальное автономное общеобразовательное учреждение города Рязани «Лицей №4»

«РАССМОТРЕНО» на заседании методического объединения учителей-предметников Протокол № 4 от 10 июня 2020 г.

«СОГЛАСОВАНО» заместитель директор по методической работе — Протокол № 4 протокол № 4 от 15 июня 2020 года в протокол № 2020 года в протокол № 2020 года в протокол № 2020 года в протокол методинения в протокол № 2020 года в протокол методинения в про

«УТВЕРЖДАЮ»

«УТВЕРЖДАЮ»

МАОУ

МАОУ

Н.И. Ширенина

МАОУ

Приказ № 102-Д

«Лицей № от 26.06.2020 г

РАБОЧАЯ ПРОГРАММА

по химии

Уровень образования: основное общее образование 11 А класс (естественно-научный профиль)

учитель химии высшей квалификационной категории Кулапова Е.Н.

Количество часов: 102 ч

Пояснительная записка

Программа разработана на основе:

- 1. Федерального государственного образовательного стандарта основного общего образования (утв. приказом Министерства образования и науки РФ от 17 декабря 2010 г. N 1897 "Об утверждении федерального государственного образовательного стандарта основного общего образования" С изменениями и дополнениями от: 29 декабря 2014 г., 31 декабря 2015 г.);
- Федерального перечня учебников, рекомендуемых к использованию при реализации имеющих государственную аккредитацию образовательных программ основного общего, среднего общего образования (приказ Минобрнауки № 253 от 31 марта 2014 года с изменениями и дополнениями);
- 3. Программы к линии УМК В.В. Лунина (углубленный уровень), Дрофа, 2017.
- 4. Основной образовательной программы основного общего образования МАОУ «Лицей №4» г. Рязани.
- 5. Учебного плана МАОУ г. Рязани «Лицей № 4» для 11 классов на 2020 2021 учебный год.

Одной из важнейших задач основного общего образования является подготовка обучающихся к осознанному и ответственному выбору жизненного и профессионального пути. Обучающиеся должны научиться самостоятельно ставить цели и определять пути их достижения, использовать приобретённый в школе опыт в реальной жизни, за рамками учебного процесса. Химия как учебный предмет вносит существенный вклад в воспитание и развитие обучающихся; она призвана вооружить их основами химических знаний, необходимых для повседневной жизни, заложить фундамент для дальнейшего совершенствования этих знаний, а также способствовать безопасному поведению в окружающей среде и бережному отношению к ней.

Предлагаемая программа по химии раскрывает содержание обучения химии учащихся 10 классов общеобразовательных организаций на углубленном уровне. Программа составлена на основе Фундаментального ядра содержания общего образования, требований к результатам освоения основной образовательной программы среднего (полного) общего образования, представленных в Федеральном государственном образовательном стандарте среднего (полного) общего образования и примерной программы по химии среднего (полного) общего образования.

Содержание обучения реализовано в учебниках химии, выпущенных издательством «Дрофа»:— Еремин В. В. Химия. 10 класс. Углубленный уровень / В.В. Еремин, Н.Е. Кузьменко, А.А. Дроздов, В.В. Лунин. – 6-е изд., перераб. – М.: Дрофа, 2019. – 477 с.

Изучение химии на профильном уровне направленно на:

Цели:

- освоение знаний о химической составляющей естественно-научной картины мира, важнейших химических понятиях, законах и теориях;
- овладение умениями применять полученные знания для объяснения разнообразных химических явлений и свойств веществ, оценки роли химии в развитии современных технологий и получении новых материалов;

- развитие познавательных интересов и интеллектуальных способностей в процессе самостоятельного приобретения химических знаний с использованием различных источников информации, в том числе компьютерных;
- воспитание убежденности в позитивной роли химии в жизни современного общества, необходимости химически грамотного отношения к своему здоровью и окружающей среде;
- применение полученных знаний и умений для безопасного использования веществ и материалов в быту, сельском хозяйстве и на производстве, решения практических задач в повседневной жизни, предупреждения явлений, наносящих вред здоровью человека и окружающей среде.

Задачи:

- Формирование у учащихся знания основ химической науки: важнейших факторов, понятий, химических законов и теорий, языка науки, доступных обобщений мировоззренческого характера.
- Развитие умений наблюдать и объяснять химические явления, происходящие в природе, лаборатории, в повседневной жизни.
- Формирование специальных умений: обращаться с веществами, выполнять несложные эксперименты, соблюдая правила техники безопасности; грамотно применять химические знания в общении с природой и в повседневной жизни.
- Раскрытие гуманистической направленности химии, ее возрастающей роли в решении главных проблем, стоящих перед человечеством, и вклада в научную картину мира.
- Развитие личности обучающихся: их интеллектуальное и нравственное совершенствование, формирование у них гуманистических отношений и экологически целесообразного поведения в быту и в процессе трудовой деятельности.

В соответствии с учебным планом на изучение химии в 11 классе на профильном уровне отведено 102 часа, 3 часа в неделю, 34 учебные недели.

Планируемые результаты обучения

В результате изучения химии на профильном уровне учащийся должен

знать/понимать:

- *роль химии в естествознании*, ее связь с другими естественными науками, значение в жизни современного общества;
- важнейшие химические понятия: вещество, химический элемент, атом, молекула, масса атомов и молекул, ион, радикал, аллотропия, нуклиды и изотопы, атомные s-, p-, d-орбитали, химическая связь, электроотрицательность, валентность, степень окисления, гибридизация орбиталей, пространственное строение молекул, моль, молярная масса, молярный объем, вещества молекулярного и немолекулярного строения, комплексные соединения, дисперсные системы, истинные растворы, электролитическая диссоциация, кислотно-основные реакции в водных растворах, гидролиз, окисление и восстановление, электролиз, скорость химической реакции, механизм реакции, катализ, тепловой эффект реакции, энтальпия, теплота образования, энтропия, химическое равновесие, константа равновесия, углеродный скелет, функциональная группа, гомология, структурная и пространственная

изомерия, индуктивный и мезомерный эффекты, электрофил, нуклеофил, основные типы реакций в неорганической и органической химии;

- *основные законы химии*: закон сохранения массы веществ, периодический закон, закон постоянства состава, закон Авогадро, закон Гесса, закон действующих масс в кинетике и термодинамике;
- *основные теории химии*: строения атома, химической связи, электролитической диссоциации, кислот и оснований, строения органических соединений (включая стереохимию), химическую кинетику и химическую термодинамику;
- классификацию и номенклатуру неорганических и органических соединений;
- природные источники углеводородов и способы их переработки;
- вещества и материалы, широко используемые в практике: основные металлы и сплавы, графит, кварц, стекло, цемент, минеральные удобрения, минеральные и органические кислоты, щелочи, аммиак, углеводороды, фенол, анилин, метанол, этанол, этиленгликоль, глицерин, формальдегид, ацетальдегид, ацетон, глюкоза, сахароза, крахмал, клетчатка, аминокислоты, белки, искусственные волокна, каучуки, пластмассы, жиры, мыла и моющие средства;

уметь:

- *называть* изученные вещества по «тривиальной» и международной номенклатурам;
- определять: валентность и степень окисления химических элементов, заряд иона, тип химической связи, пространственное строение молекул, тип кристаллической решетки, характер среды в водных растворах, окислитель и восстановитель, направление смещения равновесия под влиянием различных факторов, изомеры и гомологи, принадлежность веществ к различным классам органических соединений, характер взаимного влияния атомов в молекулах, типы реакций в неорганической и органической химии;
- характеризовать: s-, p- и d-элементы по их положению в периодической системе Д.И.Менделеева; общие химические свойства металлов, неметаллов, основных классов неорганических соединений; строение и свойства органических соединений (углеводородов, спиртов, фенолов, альдегидов и кетонов, карбоновых кислот, аминов, аминокислот и углеводов);
- объяснять: зависимость свойств химического элемента и образованных им веществ от положения в периодической системе Д.И. Менделеева; зависимость свойств неорганических веществ от их состава и строения; природу и способы образования химической связи; зависимость скорости химической реакции от различных факторов, реакционной способности органических соединений от строения их молекул;
- *выполнять химический эксперимент* по: распознаванию важнейших неорганических и органических веществ; получению конкретных веществ, относящихся к изученным классам соединений;
- проводить расчеты по химическим формулам и уравнениям реакций;
- осуществлять самостоятельный поиск химической информации с использованием различных источников (справочных, научных и научно-популярных изданий, компьютерных баз данных, ресурсов Интернета); использовать компьютерные технологии для обработки и передачи информации и ее представления в различных формах;

Использовать приобретенные знания и умения в практической деятельности и повседневной жизни для:

- понимания глобальных проблем, стоящих перед человечеством: экологических, энергетических и сырьевых;
- объяснения химических явлений, происходящих в природе, быту и на производстве;
- экологически грамотного поведения в окружающей среде;
- оценки влияния химического загрязнения окружающей среды на организм человека и другие живые организмы;
- безопасной работы с веществами в лаборатории, быту и на производстве;
- определения возможности протекания химических превращений в различных условиях и оценки их последствий;
- распознавания и идентификации важнейших веществ и материалов;
- оценки качества питьевой воды и отдельных пищевых продуктов;
- критической оценки достоверности химической информации, поступающей из различных источников

Содержание курса химии

11 КЛАСС (ОБЩАЯ и НЕОРГАНИЧЕСКАЯ ХИМИЯ) (3 ч в неделю; всего 102 ч, из них 3ч — резервное время)

Тема 1

Строение атома (9 ч)

Атом — **сложная частица**. Ядро и электронная оболочка. Электроны, протоны и нейтроны. Микромир и макромир. Дуализм частиц микромира.

Состояние электронов в атоме. Электронное облако и орбиталь. Квантовые числа. Форма орбиталей (s, p, d, f). Энергетические уровни и подуровни. Строение электронных оболочек атомов. Электронные конфигурации атомов элементов. Принцип Паули и правило Гунда. Электронно-графические формулы атомов элементов. Электронная классификация элементов: s-p-d-1 и f-1-семейства.

Валентные возможности атомов химических элементов. Валентные электроны. Валентные возможности атомов химических элементов, обусловленные числом неспаренных электронов в нормальном и возбужденном состояниях. Другие факторы, определяющие валентные возможности атомов: наличие неподеленных электронных пар и наличие свободных орбиталей. Сравнение понятий «валентность» и «степень окисления».

Периодический закон и периодическая система химических элементов Д. И. Менделеева и строение атома. Предпосылки открытия периодического закона: накопление фактологического материала, работы предшественников (И. Я. Берцелиуса, И. В. Деберейнера, А. Э. Шанкуртуа, Дж. А. Ньюлендса, Л. Ю. Мейера); съезд химиков в Карлсруэ. Личностные качества Д. И. Менделеева.

Открытие Д. И. Менделеевым периодического закона. Первая формулировка периодического закона. Горизонтальная, вертикальная и диагональная периодические зависимости.

Периодический закон и строение атома. Изотопы. Современная трактовка понятия «химический элемент». Закономерность Ван-ден-Брука — Мозли. Вторая формулировка периодического закона. Периодическая система Д. И. Менделеева и строение атома. Физический смысл порядкового номера элементов, номеров группы и периода. Причины изменения металлических и неметаллических свойств элементов в группах и периодах, в том числе больших и сверхбольших. Третья формулировка периодического закона. Значение периодического закона и периодической системы химических элементов Д.И. Менделеева для развития науки и понимания химической картины мира.

Расчетные задачи

1. Вычисление массовой доли химического элемента в соединении.

2.Установление простейшей формулы вещества по массовым долям химических элементов.

Тема 2

Строение вещества (10 ч)

Химическая связь. Единая природа химической связи. Ионная химическая связь и ионные кристаллические решетки. Ковалентная химическая связь и ее классификация: по механизму образования (обменный и донорно-акцепторный), по электроотрицательности (полярная и неполярная), по способу перекрывания электронных орбиталей (σ и π), по кратности (одинарная, двойная, тройная и полуторная). Полярность связи и полярность молекулы. Кристаллические решетки веществ с ковалентной связью: атомная и молекулярная. Металлическая химическая связь и металлические кристаллические решетки. Водородная связь: межмолекулярная и внутримолекулярная. Механизм образования этой связи, ее значение.

Межмолекулярные взаимодействия.

Единая природа химических связей: ионная связь как предельный случай ковалентной полярной связи; переход одного вида связи в другой; разные виды связи в одном веществе и т. д.

Свойства ковалентной химической связи. Насыщаемость, поляризуемость, направленность. Геометрия молекул.

Гибридизация орбиталей и геометрия молекул. sp^3 -гибридизация у алканов, воды, аммиака, алмаза; sp^2 -гибридизация у соединений бора, алкенов, аренов, диенов и графита; sp-гибридизация у соединений бериллия, алкинов и карбина. Геометрия молекул названных веществ.

Дисперсные системы (6ч). Понятие о дисперсных системах. Дисперсионная среда и дисперсная фаза. Типы дисперсных систем и их значение в природе и жизни человека. Дисперсные системы с жидкой средой: взвеси, коллоидные системы, их классификация. Золи и гели. Эффект Тиндаля. Коагуляция. Синерезис. Молекулярные и истинные растворы. Способы выражения концентрации растворов.

Расчетные задачи.

- 3. Расчеты, связанные с понятиями «массовая доля» и «объемная доля» компонентов смеси; способы количественного выражения состава вещества: массовая доля, молярная концентрация и моляльная концентрация объемная доля растворенного вещества
- 4. Расчет объемных отношений газов при химических реакциях.
- 5.Вычисление массы веществ или объема газов по известному количеству вещества одного из вступивших в реакцию или получающихся веществ.

Демонстрации. Модели кристаллических решеток веществ с различным типом связей. Модели молекул различной геометрии. Модели кристаллических решеток алмаза и графита..Получение аллотропных модификаций серы и фосфора. Образцы неорганических полимеров: серы пластической, фосфора красного, кварца и др.

Растворение окрашенных веществ в воде (сульфата меди (II), перманганата калия, хлоридажелеза (III)).

Образцы пищевых, косметических, биологических и медицинских золей и гелей.

Эффект Тиндаля.

Лабораторные опыты

Определение характера среды раствора с помощью универсального индикатора.

Проведение реакций ионного обмена для характеристики свойств электролитов.

Практические работы

Приготовление раствора заданной молярной концентрации.

Химические реакции (224)

Классификация химических реакций в органической и неорганической химии. Понятие о химической реакции; ее отличие от ядерной реакции. Реакции, идущие без

изменения качественного состава веществ: аллотропизация, изомеризация полимеризация. Реакции, идущие с изменением состава веществ: по числу и составу реагирующих и образующихся веществ (разложения, соединения, замещения, обмена); по изменению степеней окисления элементов (окислительно-восстановительные реакции и неокислительно-восстановительные реакции); Ряд стандартных электродных потенциалов по тепловому эффекту (экзо- и эндотермические); по фазе (гомо- и гетерогенные); по направлению (обратимые и необратимые); по использованию катализатора (каталитические и некаталитические); по механизму (радикальные и ионные); по виду энергии, инициирующей реакцию (фотохимические, радиационные, электрохимические, термохимические). Особенности классификации органической химии.

Вероятность протекания химических реакций. Закон сохранения энергии. Внутренняя энергия и экзо- и эндотермические реакции. Тепловой эффект химических реакций. Термохимические уравнения. Теплота образования. Понятие об энтальпии. Закон Г.И. Гесса и следствия из него. Энтропия. Энергия Гиббса. Возможность протекания реакций в зависимости от изменения энергии и энтропии.

Скорость химических реакций. Понятие о скорости реакции. Скорость гомо- и гетерогенной реакции. Энергия активации. Элементарные и сложные реакции. Факторы, влияющие на скорость химической реакции: природа реагирующих веществ; температура (закон Вант-Гоффа); концентрация (основной закон химической кинетики); катализаторы. Катализ: гомо- и гетерогенный; механизм действия катализаторов. Ферменты. Их сравнение с неорганическими катализаторами. Ферментативный катализ, его механизм. Ингибиторы и каталитические яды. Зависимость скорости реакций от поверхности соприкосновения реагирующих веществ.

Обратимость химических реакций. Химическое равновесие. Понятие о химическом равновесии. Равновесные концентрации. Динамичность химического равновесия. Константа равновесия. Факторы, влияющие на смещение равновесия: концентрация, давление и температура. Принцип Ле Шателье.

Электролитическая диссоциация. Электролиты и неэлектролиты. Электролитическая диссоциация. Механизм диссоциации веществ с различным типом химической связи. Свойства ионов. Катионы и анионы. Кислоты, соли, основания в свете электролитической диссоциации. Степень электролитической диссоциации, ее зависимость от природы электролита и его концентрации. Константа диссоциации. Ступенчатая диссоциация электролитов. Реакции, протекающие в растворах электролитов. Произведение растворимости.

Водородный показатель. Диссоциация воды. Константа диссоциации воды. *Ионное произведение воды*. Водородный показатель рН. Среды водных растворов электролитов. Значение водородного показателя для химических и биологических процессов.

Гидролиз. Понятие «гидролиз». Гидролиз органических соединений (галогеналканов, сложных эфиров, углеводов, белков, АТФ) и его значение. Гидролиз неорганических веществ. Гидролиз солей — три случая. Ступенчатый гидролиз. Необратимый гидролиз. Практическое применение гидролиза.

Расчетные задачи.

- 6. Расчеты по термохимическим уравнениям.
- 7. Вычисление теплового эффекта реакции по теплотам образования реагирующих веществ и продуктов реакции.
 - 8. Определение рН раствора заданной молярной концентрации.
 - 9. Расчет средней скорости реакции по концентрациям реагирующих веществ.
- 10. Вычисления с использованием понятия «температурный коэффициент скорости реакции».

- 11. Нахождение константы равновесия реакции по равновесным концентрациям и определение исходных концентраций веществ. Расчет энтальпии реакции.
 - 12. Расчет изменения энтропии в химическом процессе.
 - 13. Расчет изменения энергии Гиббса реакции.

Демонстрации. Получение кислорода из пероксида водорода и воды; реакции, идущие с образованием осадка, газа и воды; свойства металлов;. Реакции горения; реакции эндотермические на примере реакции разложения (, калийной селитры, известняка или мела) и экзотермические на примере реакции гашение извести и растворения концентрированной серной кислоты в воде.). Взаимодействие цинка с растворами соляной и серной кислот при разных температурах, при разных концентрациях соляной кислоты; разложение пероксида водорода с помощью оксида марганца (IV), катал азы сырого мяса и сырого картофеля. Взаимодействие цинка с различной поверхностью (порошка, пыли, гранул) с кислотой. Модель «кипящего слоя». Смещение равновесия в системе $Fe^{3+} + 3CNS^- \leftrightarrow Fe(CNS)_3$; Индикаторы и изменение их окраски в различных средах. Гидролиз карбонатов, сульфатов, силикатов щелочных металлов; нитратов цинка или свинца (II). Гидролиз карбида кальция.

Лабораторные опыты.

- 1. Определение характера среды раствора с помощью универсального индикатора.
- 2.Проведение реакций ионного обмена для характеристики свойств электролитов Реакции, идущие с образованием осадка, газа и воды для органических и неорганических кислот.

Практическая работа №2 «Идентификация неорганических соединений» Тема 4

Вещества и их свойства (524)

Классификация неорганических веществ. Простые и сложные вещества. Оксиды, их классификация. Гидроксиды (основания, кислородсодержащие кислоты, амфотерные гидроксиды). Кислоты, их классификация. Основания, их классификация. Соли средние, кислые, основные и комплексные.

Металлы. Положение металлов в периодической системе Д.И. Менделеева и строение их атомов. Простые вещества — металлы: строение кристаллов и металлическая химическая связь. Аллотропия. Общие физические свойства металлов. *Ряд стандартных электродных потенциалов*. Общие химические свойства металлов (восстановительные свойства): взаимодействие с неметаллами (кислородом, галогенами, серой, азотом, водородом), с водой, кислотами и солями в растворах, органическими соединениями (спиртами, галогеналканами, фенолом, кислотами), со щелочами. Значение металлов в природе и в жизни организмов.

Коррозия металлов. Понятие «коррозия металлов». Химическая коррозия. Электрохимическая коррозия. Способы защиты металлов от коррозии.

Общие способы получения металлов. Металлы в природе. Металлургия и ее виды: пиро-, гидро- и электрометаллургия. Электролиз расплавов и растворов соединений металлов и его практическое значение.

Щелочные металлы. Общая характеристика подгруппы. Физические и химические свойства лития, натрия и калия. Их получение и применение, нахождение в природе. Оксиды и пероксиды натрия и калия. Едкие щелочи, их свойства, получение и применение. Соли щелочных металлов. Распознавание катионов натрия и калия.

Щелочно-земельные металлы. Общая характеристика подгруппы. Физические и химические свойства магния и кальция, их получение и применение, нахождение в природе. Соли кальция и магния, их значение в природе и жизни человека.

Алюминий, его физические и химические свойства, получение и применение, нахождение в природе. Алюмосиликаты. Амфотерность оксида и гидроксида алюминия. Соли алюминия.

Переходные металлы. Железо. Медь, серебро; цинк, *ртуть*; хром, марганец (нахождение в природе; получение и применение простых веществ; свойства простых веществ; важнейшие соединения).

Неметаллы. Положение неметаллов в периодической системе Д.И. Менделеева, строение их атомов. Электроотрицательность. Инертные газы. *Благородные газы.* Соединения благородных газов. Применение.

Двойственное положение водорода в периодической системе. Неметаллы — простые вещества. Их атомное и молекулярное строение. Аллотропия и ее причины. Химические свойства неметаллов. Окислительные свойства: взаимодействие с металлами, водородом, менее электроотрицательными неметаллами, некоторыми сложными веществами. Восстановительные свойства неметаллов в реакциях со фтором, кислородом, сложными веществами-окислителями (азотной и серной кислотами и др.).

Водородные соединения неметаллов. Получение их синтезом и косвенно. Строение молекул и кристаллов этих соединений. Физические свойства. Отношение к воде. Изменение кислотно-основных свойств в периодах и группах.

Водород. Положение водорода в Периодической системе. *Изотопы водорода*. Соединения водорода с металлами и неметаллами. Вода. Жесткость воды и способы ее устранения. Тяжелая вода.

Галогены. Общая характеристика подгруппы галогенов. Особенности химии фтора. Галогеноводороды. Получение галогеноводородов. Понятие о цепных реакциях. Галогеноводородные кислоты и их соли — галогениды. Качественная реакция на галогенид-ионы. Кислородсодержащие соединения хлора.

Применение галогенов и их важнейших соединений.

Кислород, его физические и химические свойства, получение и применение, нахождение в природе. Аллотропия. Озон, его свойства, получение и применение. Оксиды и пероксиды. Пероксид водорода, его окислительные свойства и применение.

Сера. Аллотропия серы. Физические и химические свойства серы, ее получение и применение, нахождение в природе. Сероводород, его физические и химические свойства, получение и применение, нахождение в природе. Сульфиды. Оксид серы (IV), его физические и химические свойства, получение и применение. Оксид серы (VI), его физические и химические свойства, получение и применение. Сернистая кислота и сульфиты. Серная кислота, свойства разбавленной и концентрированной серной кислот. Серная кислота как окислитель, сульфаты. Качественные реакции на сульфид-, сульфит- и сульфат-ионы.

Азот, его физические и химические свойства, получение и применение, нахождение в природе. Нитриды. Аммиак, его физические и химические свойства, получение и применение. Аммиачная вода. Образование иона аммония. Соли аммония, их свойства, получение и применение. Качественная реакция на ион аммония. Оксид азота (II), его физические и химические свойства, получение и применение. Оксид азота (IV), его физические и химические свойства, получение и применение. Оксид азота (III) и азотистая кислота, оксид азота (V) и азотная кислота. Свойства азотной кислоты, ее получение и применение. Нитраты, их физические и химические свойства, применение.

Фосфор. Аллотропия фосфора. Свойства, получение и применение белого и красного фосфора. Фосфин. Оксиды фосфора (III и V). Фосфорные кислоты. Ортофосфаты.

Углерод. Аллотропия углерода (алмаз, графит, карбин, фуллерен). Активированный уголь. Адсорбция. Свойства, получение и применение угля. Карбиды кальция, алюминия и железа. Угарный и углекислый газы, их физические и химические свойства, получение и применение. Угольная кислота и ее соли (карбонаты и гидрокарбонаты). Качественная реакция на карбонат-ион.

Кремний, аллотропия, физические и химические свойства кремния, получение и применение, нахождение в природе. Силаны. Оксид кремния (IV). Кремниевые кислоты, силикаты. Силикатная промышленность.

Генетическая связь между классами органических и неорганических соединений. Понятие о генетической связи и генетических рядах в неорганической и органической химии. Генетические ряды металла (на примере кальция и железа), неметалла (на примере серы и кремния), переходного элемента (на примере цинка). Генетические ряды и генетическая связь в органической химии (для соединений, содержащих два атома углерода в молекуле). Единство мира веществ.

Расчетные задачи.

- 14. Вычисление массы или объема продуктов реакции по известной массе или объему исходного вещества, содержащего примеси. 2. Вычисление массы исходного вещества, если известен практический выход и массовая доля его от теоретически возможного.
- 15. Вычисления по химическим уравнениям реакций, если одно из реагирующих веществ дано в избытке.
 - 16. Определение молекулярной формулы вещества по массовым долям элементов.
- 17. Определение молекулярной формулы газообразного вещества по известной относительной плотности и массовым долям элементов. 6. Нахождение молекулярной формулы вещества по массе (объему) продуктов сгорания.
 - 18. Комбинированные задачи.

Демонстрации

Взаимодействие металлов с неметаллами и водой.

Опыты по коррозии и защите металлов от коррозии.

Взаимодействие оксида кальция с водой.

Взаимодействие а) щелочных металлов с водой, б) цинка с растворами соляной и серной кислот; в) железа с раствором медного купороса; ж) алюминия с раствором едкого натра.

Устранение жесткости воды. Качественная реакция на ионы кальция и бария.

Доказательство механической прочности оксидной пленки алюминия.

Отношение алюминия к концентрированной азотной кислоте.

Образцы металлов, их оксидов и некоторых солей.

Получение и свойства гидроксида хрома (III).

Окислительные свойства дихроматов.

Горение железа в кислороде и хлоре.

Опыты, выясняющие отношение железа к концентрированным кислотам.

Получение гидроксидов железа (II) и (III), их свойства.

Модели кристаллических решеток иода, алмаза, графита. Аллотропия фосфора, серы, кислорода. Получение и свойства хлороводорода, соляной кислоты и аммиака. Взаимодействие аммиака с хлороводородом и водой. Термическое разложение солей аммония. Свойства соляной, разбавленной серной кислот. Взаимодействие концентрированных серной, азотной кислот и разбавленной азотной кислоты с медью. Взаимное вытеснение галогенов из их соединений. Взаимодействие серы с водородом и кислородом. Получение кремниевой кислоты. Ознакомление с образцами стекла, керамических материалов.

Получение углекислого газа, Взаимодействие его с водой и твердым гидроксидом натрия.

Лабораторные опыты

Ознакомление с образцами металлов и сплавов.

Превращение карбоната кальция в гидрокарбонат и гидрокарбоната в карбонат.

Получение гидроксида алюминия и исследование его свойств.

Гидролиз солей алюминия.

Окисление соли хрома (III) пероксидом водорода.

Окислительные свойства перманганата калия и дихромата калия в разных средах.

Взаимодействие гидроксидов железа с кислотами.

Взаимодействие соли железа (II) с перманганатом калия.

Качественные реакции на соли железа (II) и (III).

Ознакомление с образцами чугуна и стали.

Решение экспериментальных задач на распознавание соединений металлов.

Изучение свойств соляной кислоты.

Ознакомление с серой и ее природными соединениями.

Распознавание хлорид-, сульфат- и карбонат-ионов в растворе.

Взаимодействие солей аммония со щелочью.

Ознакомление с различными видами удобрений. Качественные реакции на соли аммония и нитраты.

Решение экспериментальных задач на распознавание веществ.

Ознакомление с различными видами топлива.

Ознакомление со свойствами карбонатов и гидрокарбонатов.

Тематическое планирование Химия. 11 класс (профильный уровень)

Раздел	Наименование разделов	Кол-во	Количество работ (опытов)	
		часов	практических	контрольных
1	Строение атома	9		
2	Строение вещества.	10		1
3	Дисперсные системы	6	1	
4	Химические реакции	22	1	2
5	Вещества и их свойства:	52	6	3
	Резервные уроки	3		
	Всего	102	8	6

Календарно – тематический план

11КЛАСС

(З ЧАСА В НЕДЕЛЮ, ВСЕГО 102 ЧАСА, ИЗ НИХ З ЧАСА – РЕЗЕРВНОЕ ВРЕМЯ)

№	Наименование раздела программы и	Практические	Контрольные	
урока	количество часов. Темы, входящие в	работы	работы	
	раздел программы.			
	Строение атома (9 часов)			
1	Строение атома. Атом – сложная частица.			
	Изотопы.			
2	Состояние электронов в атоме. Электронная			
	конфигурация атомов химических элементов			
3	Валентные возможности атомов химических			
	элемент. Расчетные задачи. Вычисление			
	массовой доли химического элемента в			
	соединении.			

	T	T	1
4	Периодический закон и периодическая		
	система химических элементов		
	Д.И.Менделеева и строение атома.		
5	Предпосылки открытия периодического		
	закона. Открытие Д.И.Менделеевым		
	Периодического закона Д.И.Менделеева.		
6	Периодический закон и строение атома.		
7	Периодическая система химических		
0	элементов и строение атома.		
8	Значение Периодического закона и		
	Периодической системы химических		
	элементов Д.И.Менделеева. Расчетные		
	задачи		
	Установление простейшей формулы		
	вещества по массовым долям химических		
_	элементов.		
9	Обобщение и систематизация пройденного		
	материала. Тестирование.		
	Строение вещества (10 ч	асов)	_
10	Химическая связь.		1
11	Ковалентная химическая связь, ее виды,		
11	механизмы образования, характеристики.		
12	Гибридизация атомных орбиталей и		
12	геометрия молекул.		
13	Ионная химическая связь. Металлическая		
13	связь. Водородная связь.		
14	Качественный и количественный состав		
	вещества. Вещества молекулярного и		
	немолекулярного строения Кристаллические		
	решетки.		
15	Причины многообразия веществ: изомерия,		
	гомология, аллотропия, изотопия.		
16	Единая природа химических связей.		
17	Комплексные соединения.		
18	Обобщение знаний по теме: Химическая		
	связь.		
19	Контрольная работа №1 по теме:		
	«Периодический закон и ПСХЭ. Химическая		
	связь»		
	1	<u> </u>	
	Дисперсные системы (0	र्भ)	
	Дисперсные системы. Классификация	1	
20	дисперсных систем. Гидратная теория	=	
20	растворов Д.И. Менделеева.		
	Коллоидные растворы, их значение в		
21	природе и на производстве. Истинные		
21	растворы. Растворимость.		
22	Способы количественного выражения		
	состава вещества: массовая доля, молярная		
	концентрация и моляльная концентрация		

	объемная доля растворенного вещества.		
	Семинар «Решение расчетных задач по теме		
23	растворы»		
24	Практическая работа №1.Приготовление		
	раствора заданной молярной концентрации.		
25	Обобщение знаний. Проверочная работа		
23	Химические реакции (22	11000)	
	Классификация химических реакций в	4aca)	2
26	неорганической и органической химии.		2
	Тепловые эффекты реакции.		
	Термохимические уравнения. Понятие об		
27,28	энтальпии и энтропии. Энергия Гибса. Закон		
21,20	Гесса и следствия из него. Расчеты по		
	термохимическим уравнениям.		
	Скорость химической реакции. Закон		
	действующих масс. Катализаторы и катализ.		
29,30	Решение задач на определение скорости		
	химической реакции.		
31,32	Обратимость реакций. Химическое		
31,32	равновесие и способы его смещения.		
	Принцип Ле –Шателье.		
33,34	Электролитическая диссоциация. Степень и		
33,34	константа диссоциации. Факторы, от		
	которых они зависят		
35	Реакции ионного обмена в водных		
33	растворах.		
36	Произведение растворимости Ионное		
	произведение воды. Водородный показатель		
	(рН) раствора.		
37	Практическая работа №2 «Идентификация		
	неорганических соединений»		
38	Контрольная работа №2 по теме:		
	«Многообразие химических реакций 1		
	часть»		
39,40	Гидролиз органических и неорганических		
,	соединений. Применение гидролиза в		
	промышленности.		
41	Окислительно-восстановительные реакции.		
	Методы электронного и электронно –		
	ионного баланса. Направление ОВР.		
	1		
42	Окислительные свойства азотной кислоты по		
	отношению к некоторым металлам.		
	Окислительные свойства серной кислоты по		
	отношению к некоторым металлам.		
43	Перманганата калия в разных средах		
	(щелочной, кислой, нейтральной).		
	Пероксид водорода, его окислительные		
	свойства.		
44,45	Электролиз растворов и расплавов.		
	Применение.		

46	Обобщение и систематизация знаний по		
70	теме: «Химические реакции».		
47	Контрольная работа №3 по теме:		
77	«Многообразие химических реакций 2		
	часть»		
	Вещества и их свойства (5		
48	Классификация неорганических веществ.	6	3
49	Металлы. Положение в ПС. Общие	0	3
77	физические и химические свойства.		
50	Общие способы получения металлов.		
30	Коррозия металлов		
51	Щелочные металлы. Общая характеристика		
	подгруппы. Физические и химические		
	свойства лития, натрия и калия. Их		
	получение и применение, нахождение в		
	природе.		
52	Оксиды и пероксиды натрия и калия. Едкие		
	щелочи, их свойства, получение и		
	применение. Соли щелочных металлов.		
	Распознавание катионов натрия и калия.		
53	Щелочно-земельные металлы. Общая		
	характеристика подгруппы. Физические и		
	химические свойства магния и кальция, их		
	получение и применение, нахождение в		
	природе.		
54	Соли кальция и магния, их значение в		
	природе и жизни человека. Жесткость воды		
	и способы ее устранения		
55	Алюминий, его физические и химические		
	свойства, получение и применение, нахождение в природе. Алюмосиликаты.		
56	1 1		
30	Амфотерность оксида и гидроксида алюминия. Соли алюминия.		
57	Обобщение и систематизация пройденного		
37	материала. Тестирование.		
58	Переходные металлы. Медь, серебро, цинк.		
	Особенности строения их атомов.		
59	Переходные металлы: ртуть, хром, марганец,		
	железо (нахождение в природе; получение и		
	применение простых веществ; свойства		
	простых веществ)		
60	Оксиды, гидроксиды и соли переходных		
	элементов		
61	Окислительные свойства солей хрома и		
	марганца в высшей степени окисления.		
	Комплексные соединения переходных		
	элементов.		
62	Понятие металлургии. Сплавы.		
	Производство чугуна и стали.		
63	Практическая работа №3 «Исследование		
	восстановительных свойств металлов»		

	Практическая работа №4 «Опыты,
64	характеризующие свойства соединений
	металлов»
	Решение задач. Вычисление массы или
65	объема продуктов реакции по известной
	массе или объему исходного вещества,
	содержащего примеси.
	Решение задач. Вычисление массы
	исходного вещества, если известен
66	практический выход и массовая доля его от
	теоретически возможного
(7	Контрольная работа № 4 по теме
67	«Металлы и их соединения»
	Неметаллы. Положение неметаллов в
	периодической системе Д.И. Менделеева,
C 0	строение их атомов.
68	Электроотрицательность. Инертные газы.
	Двойственное положение водорода в
	периодической системе
	Неметаллы — простые вещества. Их
	атомное и молекулярное строение.
	Химические свойства неметаллов.
	Водородные соединения неметаллов.
69	Получение их синтезом и косвенно.
	Строение молекул и кристаллов этих
	соединений. Физические свойства.
	Отношение к воде. Изменение кислотно-
	основных свойств в периодах и группах.
	Водород. Положение водорода в
70	Периодической системе. Изотопы водорода.
70	Соединения водорода с металлами и
	неметаллами. Вода. Тяжелая вода.
	Галогены. Общая характеристика подгруппы
	галогенов. Особенности химии фтора.
	Галогеноводороды. Получение
71	галогеноводородов. Понятие о цепных
	реакциях. Галогеноводородные кислоты и их
	соли – галогениды. Качественная реакция на
	галогенид-ионы.
70	Кислородсодержащие соединения хлора.
72	Применение галогенов и их важнейших
	соединений.
73	Кислород, его физические и химические
	свойства, получение и применение,
	нахождение в природе. Аллотропия. Озон,
71	его свойства, получение и применение
74	Оксиды и пероксиды. Пероксид водорода,
75	его окислительные свойства и применение.
75	Сера. Аллотропия серы. Физические и
	химические свойства серы, ее получение и
7.	применение, нахождение в природе.
76	Сероводород, его физические и химические

	Т	T 1
	свойства, получение и применение,	
	нахождение в природе. Сульфиды.	
	Оксид серы (IV), его физические и	
	химические свойства, получение и	
77	применение. Оксид серы (VI), его	
	физические и химические свойства,	
	получение и применение.	
78	Сернистая кислота и сульфиты.	
	Серная кислота, свойства разбавленной и	
	концентрированной серной кислот. Серная	
79	кислота как окислитель. сульфаты.	
	Качественные реакции на сульфид-,	
	сульфит- и сульфат-ионы.	
80	Обобщение и систематизация пройденного	
	материала. Тестирование.	
81	Контрольная работа № 5 по теме:	
	«Галогены, кислород, сера».	
82,83	Азот, его физические и химические	
	свойства, получение и применение,	
	нахождение в природе. Нитриды.	
84	Аммиак, его физические и химические	
	свойства, получение и применение.	
	Аммиачная вода. Образование иона	
	аммония. Соли аммония, их свойства,	
	получение и применение. Качественная	
	реакция на ион аммония	
85	Оксид азота (II), его физические и	
	химические свойства, получение и	
	применение. Оксид азота (IV), его	
	физические и химические свойства,	
	получение и применение Оксид азота (III) и	
	азотистая кислота, оксид азота (V) и азотная	
	кислота.	
86	Свойства азотной кислоты, ее получение и	
	применение	
87	Нитраты, их физические и химические	
	свойства, применение	
88	Фосфор. Аллотропия фосфора. Свойства,	
	получение и применение белого и красного	
	фосфора. Фосфин. Оксиды фосфора (III и V).	
	Фосфорные кислоты. Ортофосфаты	
89	Углерод. Аллотропия углерода (алмаз,	
	графит, карбин, фуллерен). Активированный	
	уголь. Адсорбция. Свойства, получение и	
	применение угля. Карбиды кальция,	
	алюминия и железа.	
90	Угарный и углекислый газы, их физические	
1 30	и химические свойства, получение и	
	применение. Угольная кислота и ее соли	
	применение. Утольная кислота и ее соли (карбонаты и гидрокарбонаты).	
	Качественная реакция на карбонат-ион.	

91	Практическая работа №5 «Получение и	
	собирание газов (кислород, аммиак, оксид	
	углерода (IV) и др.), опыты с ними»	
92	Практическая работа №6 «Определение	
	содержания карбонатов в известняке.	
	Устранение временной жесткости воды»	
93	Кремний, аллотропия, физические и	
	химические свойства кремния, получение и	
	применение, нахождение в природе. Силаны.	
	Оксид кремния (IV). Кремниевые кислоты,	
	силикаты. Силикатная промышленность	
94	Практическая работа №7	
	«Экспериментальные задачи на получение и	
	распознавание веществ»	
95	Генетическая связь между классами	
0.5	органических и неорганических соединений.	
96	Практическая работа №8	
	«Экспериментальные задачи на получение и	
0.7	распознавание веществ»	
97	Решение задач	
98	Обобщение по теме «Неметаллы»	
99	Контрольная работа №6 по теме	
	«Неметаллы»	
100-	Резервные уроки	
102		